277 research outputs found

    Wiggly tails: a gravitational wave signature of massive fields around black holes

    Full text link
    Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such `dirtiness' within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasi-bound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasi-normal ringing followed by a late time tail. In contrast to `clean' black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasi-bound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in fully non-linear studies; our analysis shows they are present at linear level, and, since it reduces to a 1+1 dimensional numerical problem, allows for cleaner numerical data. Moreover, we discuss the power law of the tail and that it only becomes universal sufficiently far away from the `dirty' black hole. The wiggly tails, by constrast, are a generic feature that may be used as a smoking gun for the presence of massive fields around black holes, either as a linear cloud or as fully non-linear hair.Comment: 6 pages, 4 figure

    Non-linear Q-clouds around Kerr black holes

    Get PDF
    Q-balls are regular extended `objects' that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces - existence lines - of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.Comment: 11 pages, 4 figure

    On the interaction between two Kerr black holes

    Full text link
    The double-Kerr solution is generated using both a Backlund transformation and the Belinskii-Zakharov inverse-scattering technique. We build a dictionary between the parametrisations naturally obtained in the two methods and show their equivalence. We then focus on the asymptotically flat double-Kerr system obeying the axis condition which is Z_2^\phi invariant; for this system there is an exact formula for the force between the two black holes, in terms of their physical quantities and the coordinate distance. We then show that 1) the angular velocity of the two black holes decreases from the usual Kerr value at infinite distance to zero in the touching limit; 2) the extremal limit of the two black holes is given by |J|=cM^2, where c depends on the distance and varies from one to infinity as the distance decreases; 3) for sufficiently large angular momentum the temperature of the black holes attains a maximum at a certain finite coordinate distance. All of these results are interpreted in terms of the dragging effects of the system.Comment: 19 pages, 4 figures. v2: changed statement about thermodynamical equilibrium in section 3; minor changes; added references. v3: added references to previous relevant work; removed one equation (see note added); other minor corrections; final version to be published in JHE

    n-DBI gravity

    Get PDF
    n-DBI gravity is a gravitational theory introduced in arXiv:1109.1468 [hep-th], motivated by Dirac-Born-Infeld type conformal scalar theory and designed to yield non-eternal inflation spontaneously. It contains a foliation structure provided by an everywhere time-like vector field n, which couples to the gravitational sector of the theory, but decouples in the small curvature limit. We show that any solution of Einstein gravity with a particular curvature property is a solution of n-DBI gravity. Amongst them is a class of geometries isometric to Reissner-Nordstrom-(Anti) de Sitter black hole, which is obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to the Maxwell field. These solutions have, however, two distinct features from their Einstein gravity counterparts: 1) the cosmological constant appears as an integration constant and can be positive, negative or vanishing, making it a variable quantity of the theory; 2) there is a non-uniqueness of solutions with the same total mass, charge and effective cosmological constant. Such inequivalent solutions cannot be mapped to each other by a foliation preserving diffeomorphism. Physically they are distinguished by the expansion and shear of the congruence tangent to n, which define scalar invariants on each leave of the foliation.Comment: 13 page

    String Theory and Hybrid Inflation/Acceleration

    Get PDF
    We find a description of hybrid inflation in (3+1)-dimensions using brane dynamics of Hanany-Witten type. P-term inflation/acceleration of the universe with the hybrid potential has a slow-roll de Sitter stage and a waterfall stage which leads towards an N=2 supersymmetric ground state. We identify the slow-roll stage of inflation with a non-supersymmetric `Coulomb phase' with Fayet-Iliopoulos term. This stage ends when the mass squared of one of the scalars in the hypermultiplet becomes negative. At that moment the brane system starts undergoing a phase transition via tachyon condensation to a fully Higgsed supersymmetric vacuum which is the absolute ground state of P-term inflation. A string theory/cosmology dictionary is provided, which leads to constraints on parameters of the brane construction from cosmological experiments. We display a splitting of mass levels reminiscent of the Zeeman effect due to spontaneous supersymmetry breaking.Comment: 1+21 pages, 5 figures, LaTeX; one figure added; included computation of supertrace of mass squared for the string theory and discussion of relation to spontaneous breaking of supersymmetry; several typos corrected; references adde
    corecore